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Abstract An h-adaptive finite element code for solving coupled Navier-Stokes and energy
equations is used to solve the thermally dviven cavity problem for Rayleigh numbers at which no
steady state exists (greater than 1.9 x 10°). This problem is characterised by sharp thermal and
Sflow boundary layers and highly advection dominated transport, which normally requires special
algorithms, such as streamline upwinding, to achieve stable and smooth solutions. It will be shown
that h-adaptivity provides a suitable solution to both of these problems (sharp gradients and
advection dominated transport). Adaptivity is also very effective in resolving the flow physics,
characterised by unsteady internal waves, are calculated for three Rayleigh numbers; 2 x 105,
3 x 10% and 4 x 10° using a Prandtl number of 0.71 and rvesults are compared with other
published vesults.

1. Introduction

It is well known that /-adaptive FEM is very well suited to modelling scalar and
vector fields containing sharp gradients by automatically refining the spatial
discretisation to “fit” the solution. The refinement is normally based on some
a-posteriori estimation of the discretisation error. In previous papers (Usmani,
1999; Mayne et al, in press) the authors have clearly shown that for transient
flow and transport problems, where advection is the dominant mechanism,
h-adaptive FEM fulfils another very important role. It removes the requirement
of introducing any special algorithm for treatment of the “wiggles” generated by
using numerical schemes which are essentially of a “central difference” type, as
is the case with the standard Galerkin finite element formulation, often referred
to as GFEM. There has been a great deal of controversy over the special
schemes that are used to “suppress the wiggles” (Gresho and Lee, 1979),
however some of the best schemes, for instance SUPG (Brocks and Hughes,
1982), have been highly successful in providing a mathematically consistent
framework, by using non-Galerkin formulations for such problems. In a
previous paper (Usmani, 1999), Usmani clearly demonstrated that if z-adaptive
FEM is used for transient pure-advection problem (the rotating cone or cosine-
hill problem) then the GFEM and SUPG solutions are practically
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indistinguishable. This was a confirmation of the original assertion by Gresho /-adaptive finite
and Lee (1979), “don’t suppress the wiggles they are telling you something”. The e]ement solution

authors tested this further (Mayne et al, in press) for a coupled flow and heat
transfer problem (thermally driven cavity problem for Rayleigh numbers up to
10 x 10% with the same conclusion. The exercise here is partly to test the
h-adaptive GFEM solution procedure further for even higher Rayleigh numbers
when no steady state solutions exist.

Modelling the effects of a temperature difference across a square cavity has
many important technical applications. A thorough understanding of the
convective processes present at high Rayleigh numbers is critical in assessing
the transport of heat in nuclear reactors, solar collectors and buildings. The
thermally driven cavity problem also serves as a convenient benchmark test for
new programs (de Vahl Davis, 1981), which is another purpose of this exercise,
as the authors are using this program (CADTRAS) to model the transport of
cohesive sediments in estuarine waters, which are characterised by sharp
density interfaces. The program was thoroughly tested by solving the
thermally driven cavity problem for Rayleigh numbers up to 1.0 x 10® (Mayne
et al., in press) and comparing results in considerable detail with the best
available benchmark solutions. In this paper detailed solution of the same
problem is undertaken for Rayleigh numbers 2 x 10% 3 x 108and 4 x 108,

Bergholz (1978) and Patterson and Imberger (1980) both discuss important
features that are present in the development of a transient solution for high
Rayleigh number cavity flows. Prandtl number strongly influences the
transient development of the buoyancy driven flow features. The paration and
recirculation observed in the departing corners become less pronounced and
eventually disappear as the Rayleigh number is increased (Bergholz, 1978; Ravi
et al., 1994). The corner regions are particularly important in the development
of the flow over time. Ivey (1984) proposed that the corner flow regions were
characteristic of a hydraulic jump, however Ravi et al (1994) have concluded
that this was not possible for several reasons. Chief among these are:

+ theory of hydraulic jumps does not explain the separation of flow at the
horizontal boundaries;

« there is no substantial energy loss associated with the departing corner
flow;

+ the Froude number dependency appears to be arbitrary.

They propose that the flow structure in the departing corner is solely
dependent on thermal effects, producing a separation and recirculation of the
boundary layer. They also state that the separation zone that characterises the
departing corner for high Rayleigh number flows does not form beyond a
Prandt]l number of 1.2, similarly the recirculation zone disappears for Prandt]
numbers above 1.4. They go on to say that this is due to the core temperature
distribution suppressing large undershoots of temperature at the boundaries.
Several researchers discuss the oscillatory behaviour of the flow at high
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Rayleigh numbers due to internal wave instability (Chenoweth and Paolucci,
1986; Paolucci and Chenoweth, 1989; Haldenwang, 1986; Haldenwang and
Labrosse, 1986). Chenoweth and Paolucci (1986) present power spectra plots of
temperature time trace data, giving values of two key frequencies that
dominate high Rayleigh number flows; the frequency of the boundary layer on
the vertical wall and the frequency of wave breaking at the departing corners.
The decrease in thickness of the boundary layer with increasing Rayleigh
number imposes a constraint on the solution of the problem (Chenoweth and
Paolucci, 1986; Haldenwang, 1986; Armfield and Patterson, 1991), requiring a
high level of discretisation.

2. Governing equations

The governing equations have been written for a constant density,
incompressible Newtonian fluid using the Boussinesq approximation to model
buoyancy.

Continuit
onma V.v=0 on Q, (1)

where v represents the velocity and €2 represents the domain.

Navier-Stokes

p<%+V-VV> +VP=V". M[Vv—l— (VV)T:| —pgB(T—T,)on Q, (2)

subject to boundary conditions:

F:Pn—,u{VV—i-(Vv)T} ‘non g (3)
v =v(x,y,t) on T}, (4)

and initial conditions:
v(t =0) =v, with V- v, = 0. (5)

u 1s the dynamic viscosity, g is the acceleration due to gravity, § is the
volumetric coefficient of thermal expansion, 7" is the temperature, 7, is a
reference temperature, F represents the applied tractions on the boundary I'z, #
is the unit normal vector and ¥ is the Dirichlet boundary condition for velocity
on the part of the boundary T,

Energy

T
%_t+v.vT:V-;~;VTonQ, (6)



subject to boundary conditions:

n-(kVT)=qonTy (7)
T =T(x,y,t) onT'p (8)

and initial conditions:
T(t=0)=T,, 9)

where ¢ is a specified normal heat flux on the boundary T'g, 7 is the Dirichlet
boundary condition for temperature on the boundary I'7 and & is the thermal
diffusivity given by
k
K = —, 10)
rGp (

where, & is the thermal conductivity, p is the fluid density and C, is the specific
heat capacity.

2.1 Finite element formulation

The program is based on the Galerkin finite element method (GFEM), solving for
the primitive variables: u-velocity, v-velocity and T-temperature at all nodes in
the mesh and P-pressure at a reduced level of interpolation to avoid spurious
pressure modes, using a mixed formulation for the Navier-Stokes equations. The
Navier-Stokes and energy equations were coupled by the Boussinesq
approximation for buoyancy. Notation used here is as used by Gresho et al. (1979,
1980). The Galerkin FEM discretisation produces a system of ODEs as follows:

Nauvier-Stokes
M, 0 07/u Kw Cu Ku]/u F,
0O 0 O P|+|CtY o cCT Pl=1| 0], (11)
0 0 M, v K,zw. C, K,y v F,

where M, K, C and F represent the mass matrix, viscous stress matrix,
pressure gradient matrix and global force vector respectively. The first to third
rows represent the x-momentum, continuity and jy-momentum equation
respectively. The right hand side vector F, contains the coupling buoyancy
term.

Energy

Mr|(T) + Kt|(T) = Fr). (12)

Expansion of all terms can be found in Usmani ef al. (1992). The two systems of
equations above are solved as a coupled system, with the K term containing

h-adaptive finite
element solution

175




HFF
11,2

176

the velocities (obtained from solving the flow field) and the F,, term containing
the buoyancy forces (determined by the temperature field).

2.2 Temporal discretisation
Temporal discretisation of the time domain is achieved by applying the
generalised midpoint rule (Hughes, 1983, 1987).

[M““* - Km] (Bs1) = {M+ -k, e+ B

al\t al\t « «o (13)

Variation of «v leads to different members of this family of methods, i.e.
a = 0-Forward difference or forward Euler.
a = % —Midpoint rule or Crank Nicolson.
a = % — Galerkin.

1 — Backward difference or backward Euler.

a

The Crank Nicolson, Galerkin and backward Euler schemes are all
unconditionally stable; however, of these methods the oscillation limit is lowest
for a = % The time step size chosen for all Rayleigh numbers is small enough
to avoid an oscillatory solution when using o = % The choice of
unconditionally stable implicit methods is enforced by the use of /-adaptivity
as the smallest elements determine the stability of conditionally stable explicit
methods, which makes them impractical for use in this context.

The formulations described above were implemented in the implicit
transient FE code CADTRAS (Coupled Advective Diffusive TRAnSport
model), which was used to solve the thermally driven cavity problem. The code
incorporates an unstructured Delaunay triangulation based mesh generator
(Huang and Usmani, 1994), which allows automatic adaptive re-meshing to
take place at each time step if necessitated by the a posteriori error estimation
algorithm. Six-node triangular elements are used for all the meshes.

3. Adaptivity

The use of h-adaptivity enables the solution of this problem at high Rayleigh
numbers without the necessity of designing a suitable mesh at first and going
through a trial-and-error process. Adaptivity automatically produces an optimal
mesh based on a user specified discretisation error, thus saving computational
time and focusing effort intelligently over successive time steps on areas of high
scalar gradients (which for this problem coincide with the areas of high velocity
gradients). There are five distinct steps to the iterative adaptive process used here:

(1) Solution of the coupled system.

(2) Recovery of smoothed scalar gradients using the super-convergent
patch recovery (SPR) method (Zienkiewicz and Zhu, 1991).

(3) Error estimation using the a posteriori error calculated at all nodes in the
mesh for the scalar field.



(4) Re-meshing based on the mesh sizes produced from the previous step.
(5) Transfer of all data to the new mesh.

Recovery

The temperature field generated by the finite element method is most accurate
at nodal points, whereas the temperature gradients are most accurate at
Gaussian integration points, known as the super-convergence phenomenon.
Hinton and Campbell (1974) showed that finite elements produce superior
values of temperature gradient at node points after application of a smoothing
procedure. Their method was based on a global smoothing scheme requiring
the solution of a large system of equations. A more efficient and effective
procedure was introduced by Zienkiewicz and Zhu (1991), called super-
convergent patch recovery (SPR). The smoothed nodal gradients are calculated
from the Gausspoints on a patch of elements surrounding a node, using a least
squares interpolation for each node in the mesh.

Error estimation

The error estimator used was originally derived for heat conduction (Lewis
et al, 1991). Mathematical justification of using such an estimator for the
problem of this paper does not exist, however, as the estimator used is based
on the scalar flux, it has proven very effective in detecting regions of
high scalar gradient, which in practice is sufficient for the purposes of
this paper. The a-posteriori error is based on an energy norm (see Lewis et al.
(1991)),

lel? = /Q (V) kYT — /Q (V) RV Td0 (14)

if we define

Q12 = /Q(VT)TWMQ

1QI? = /ﬂ (V) kv Tde, (15)

then equation (14) can be rewritten as
2 2 ")
[lel]” = 11QII" — [|QII"- (16)
Such a definition allows a practical representation of the error norm in terms of

a percentage error 7,

el
=—" x 100%. 17
=) < 1% 17)

h-adaptive finite
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Re-meshing and mesh generation

Specification of a permissible error 77 determines the level of refinement
throughout the mesh, leading to a predicted reduction or increase in the element
sizes so that the new mesh may possess an approximately equal distribution of
error. The maximum permissible error for each element is calculated as:

2\ 2
lell, = n<'fj¢”> , (18)

where m is the number of elements, 77 is the specified maximum percentage
error. Dividing ||¢||, by the calculated error in an element yields a parameter &,
as follows,

o _ el 9

lell,”

Le. if £ > 1 the mesh must be refined in the vicinity of element ¢; conversely, if
&, < 1the mesh may be coarsened. The new element size is calculated using,
- h
h, = =%, (20)
&

where 7, is the original element size and p is the order of the element shape
functions.

Mesh data transfer. Ensuring proper transfer of variables between meshes is
crucial for conservation of quantities such as energy and momentum. A
transfer strategy using local co-ordinates of nodal points and elemental shape
functions has been used that maps the mesh data accurately. The local
co-ordinates (£ — 1)) of each node in the adapted mesh are determined with
respect to the elements of the previous mesh. Element shape functions are then
used to interpolate the data onto the new mesh nodes.

4. The benchmark problem

The problem involves modelling fluid flow in a two-dimensional square cavity
of typical dimension L with the two vertical walls being maintained at a
temperature difference of AT. The top and bottom walls are insulated and
the velocities at all boundaries set to zero. The fluid inside the cavity is
initially at rest and at a temperature which is the mean of the temperatures
on the vertical walls. The resulting flow can be described by the Rayleigh
number:

ATL?

)
VKR

Ra = GrPr =g (21)

where g is the acceleration due to gravity, 3 is the coefficient of volumetric
expansion, L the typical dimension of the cavity, AT is the temperature



difference between the vertical walls, v is the kinematic viscosity and « is the
thermal diffusivity.

The following non-dimensional groups are used in the analysis and
presentation of the computational results:

« Velocity
. ulL
vL
= 2
=2 (23)
« Temperature
., T-T
T = T, (24)
+ Co-ordinates
s _ X
=7 (25)
LY
V=1 (26)
o Time
. Kl

where * indicates the the non-dimensional quantity, and 73 and 7T the fixed
temperatures at the two side walls of the cavity.
The Nusselt number is calculated at each node in the domain using:
oT

Nu:uT—a, (28)

where the temperature gradient is obtained by the gradient recovery process.

4.1 Departing corner flow

It is important to understand the mechanism that generates the destabilising
internal waves, dictating the pattern of the flow field. As mentioned in the
introduction, Ravi et al. (1994) set out a description of the flow behaviour in the
departing corners and give a mechanism for its creation. The left cavity region
next to the vertical boundary carries flow at large velocities. This flow, after
departing the corner, slows down, the isotherms that were packed closely
together at the wall boundary spread out over a much thicker layer. The
highest velocity layer, nearest to the hot boundary, experiences the greatest

h-adaptive finite
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change in velocity after passing the departing corner. A slightly cooler layer
(travelling at a slightly lower velocity) next to the hot layer is forced to slide
over it in the corner region. This causes a sharp reversal in velocity as the
cooler boundary layer plunges abruptly back into the cooler core, resulting in
the characteristic u-shape isotherm. At high Rayleigh numbers the downward
force of the negatively buoyant plume is enough to cause separation of flow
from the horizontal boundary. Recirculation occurs when the fluid is re-
entrained into the vertical wall boundary from the plume.

5. Results

Values of u-velocity, v-velocity and temperature were recorded over the duration
of the simulation for all three Rayleigh numbers: 2 x 10% 3 x 10® and
4 x 10® They where recorded at a point x = 0.1032, y = 0.8036 within the unit
square cavity, following Chenoweth ef al (1986). This point falls in a
particularly sensitive location regarding the oscillatory nature of the boundary
layer. Figures 1 and 2 show time trace histories for all three variables. The
temperature time history data was also converted from the time domain into the
frequency domain using fast Fourier transform (FFT) analysis, this allows
frequencies that characterise the time plots to be seen more clearly, see Figure 2.

The graphs showing primitive variable time histories for Ra = 2 x 10%,
Figures 1(a,b) and 2(a) show convergence to a periodic oscillation. Each
plot is dominated by one fundamental frequency. This fundamental
frequency is generated by the internal boundary layer instability at the
departing corners.

Figure 2(b) shows one very clear spike, indicating the fundamental
frequency, with a value of 546.9Hz. The Ra = 3 x 10® time histories show a
clear waveform consisting of more than one frequency, exhibiting quasi-
periodic behaviour. The FFT plot, Figure 2(d), reveals a clear fundamental
frequency at 651.0Hz, followed by several small, high frequency components.
The time history graphs for Ra = 4 x 10® show mildly chaotic, quasi-periodic
behaviour, as previously shown by Chenoweth and Paolucci (1986). The
fundamental frequency as per Figure 2(f) is 781.3Hz. There is also an increased
amount of high frequency background noise.

It is clear from the results that an increase in Rayleigh number is
accompanied by an increase in the fundamental frequency of the oscillation.
Chenoweth and Paolucci (1986) present a table of results showing a similar
increase in frequency with Rayleigh number, however, the values they obtained
were slightly higher; 630.3, 737.7 and 850.2 for Ra = 2 x 108, 3 x 10° and
4 x 108 respectively.

The frequency plot for Ra = 3 x 108 Figure 2(d), shows a clear high
amplitude fundamental frequency followed by several low amplitude high
frequencies. The amplitude of the fundamental frequency is significantly
larger than that of 2 x 10® and 4 x 10% For 3 x 10° the majority of the
spectral energy resides in this spike while in the other Rayleigh numbers this
energy is divided up between the fundamental frequency and other more
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substantial higher frequency components. The spectral plots presented by
Chenoweth and Paolucci (1986) show the same phenomenon but on a log scale
for amplitude.

5.1 Rayleigh number behaviour scale

Figure 3 has been constructed on the basis of results presented in several
research papers (Chenoweth and Paoluicci, 1986; Haldenwang, 1986; Le Quere,
1991). The first important threshold marked on the diagram is Ra = 1.9 x 10°.
This represents the transition from steady state flow to unsteady periodic flow,
as recorded by Chenoweth and Paolucci (1986) and Le Quere and Alziary de
Roquefort (1986). Chenoweth and Paolucci (1986) go on to predict two more
regions of transition; instability of the wall boundary layers leading to
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Figure 1.
Time trace histories at
x = 0.1032, y = 0.8036
for U and V velocities
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Figure 2.

Time trace histories and
FFT plots at x = 0.1032,
y = 0.8036 for
temperature
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quasi-periodic flow near 2.7 x 10® and a further change to mildly chaotic flow
somewhere between 3 x 108 and 4 x 10%. Very similar behaviour is noticed in
the presented results, in that at Ra = 2 x 108 the flow is periodic, at 3 x 10°® the
flow is clearly quasi-periodic and at 4 x 108 the flow is still maintains its quasi-
periodic nature but shows signs of chaoticity, see Chenoweth and Paolucci
(1986, Figure 13).

5.2 h-adaptivity and its role in the solution

Figure 4 shows a sequence of meshes produced during the solution of the
thermally driven cavity problem for Ra = 4 x 10% There were a total of 750
time steps producing 13 separate adaptive meshes during the simulation, six
are shown to highlight the effective capture of important flow features. The
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corresponding velocity vectors and temperature contours are shown in
Figures 5 and 6.

Mesh 1. This is the pre-adaptive mesh, i.e. the result of a number of re-
meshing cycles based on the boundary conditions. The area around the vertical
boundary layers is heavily discretised to capture the steep temperature
gradients.

Mesh 6. The boundary layer has rounded the corner and is moving across
the horizontal surface. The mesh follows the temperature front as it moves,
some degree of flow separation is manifested in the mesh at the departing
corner.

Mesh 8. The boundary layer is half way across the cavity, there are two
distinct regions that form the leading edge of the intrusion; the separated zone
and the boundary layer still attached to the horizontal surface.

Mesh 10. The boundary layer has reached the opposite vertical boundary. A
continuous plume stretches across the cavity.

Mesh 12. The boundary layer has diffused into its surroundings to some
degree causing the temperature gradients to decrease. The mesh has coarsened
in these areas accordingly.

Mesh 13. The highest level of discretisation is focussed in the departing
corners capturing the zone of boundary layer recirculation. The centre of the
recirculating eddy is just visible as an area of lower discretisation near the
corner. The flow has settled down considerably, however, the separated
boundary layer is moving back and forth quasi-periodically. This is the last re-
meshing cycle of the run, the temperature gradients are only varying around
the departing corners and they have been discretised adequately to capture the
unsteady internal waves.

Figures 5-7 show the development of the velocity field and temperature
contours over time. The isotherms become increasingly stratified resulting in
the distribution shown in Figure 6. The flow is mildly chaotic and unsteady but
still retains a high degree of structure. The asymmetry of the flow, apparent in
the isotherms and velocity vector plots in Figures 5-7, is mentioned by

h-adaptive finite
element solution

183

Figure 3.
Rayleigh numbers
versus behaviour
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Figure 6.
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Figure 7.
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Figure 8.
Temperature time trace
for Ra = 2 x 108

Table I.

Nusselt number
positions for each
Rayleigh number

Chenoweth and Paolucci (1986). They suggest that the loss of symmetry is due
to the quasi-periodic nature of the flow generated by presence of two different
fundamental frequencies, i.e. the internal wave and wall boundary oscillations.

Figure 8 shows the time history of temperature recorded at two points for Ra
=2 % 10 one at x = 0.1032, y = 0.8036 and the other at x = 0.8968, y = 0.1964.
The fundamental frequencies of the two time traces are very similar but there is
an obvious difference between the two time history plots in Figure 8.
Unfortunately, the lower time trace seems “damped” compared to the top trace,
this is due to the effect of unstructured mesh generation. The application of a
structured mesh generator should remove this problem and allow a thorough
analysis of any possible phase differences, however, this is beyond the scope of
this paper.

Table I shows the vertical positions of of maximum and minimum Nusselt
numbers for the three Rayleigh numbers presented. Figures 9-11 show the
variation of Nusselt number over a period of time. The maximum, minimum
and average Nusselt number on the boundary x = 0.0 plotted against
dimensionless time are shown. All nine plots show that the value of Nusselt
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Figure 9.

Time plots of Nusselt
number on x = 0.0 for
Ra =2 x 10°
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Figure 10.

Time plots of Nusselt
number on x = 0.0 for
Ra =3 x 10
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Figure 11.

Time plots of Nusselt
number on x = 0.0 for
Ra =4 x 10°
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number at the vertical boundary show periodic variation. The time histories of
maximum and average Nusselt numbers show small amplitude oscillation,
while the minimum Nusselt number is more sensitive to the unsteady nature of
the flow, exhibiting larger amplitude oscillation, becoming more pronounced
with increasing Rayleigh numbers.

6. Conclusions

It was demonstrated that h-adaptivity with GFEM provides a powerful
means of solving difficult problems such as the thermally driven cavity
problem at high Rayleigh numbers characterised by thin boundary layers,
separation and recirculation zones and oscillatory internal waves dominating
the flow behaviour. The use of /-adaptivity produces an accurate, efficient
and economical solution to this problem. The accuracy compared favourably
with other published solutions. /-adaptive methods with automatic mesh
refinement based on the actual physics of the problem are inherently efficient
as no development time is required to create the “right” mesh for a problem.
They are also economical as an “optimal” discretisation is produced for
a desired level of accuracy, with grid-points placed only where they are
needed. The actual computational time is divided between the solution of
the discretised governing equations and the adaptive process (gradient
recovery, error-estimation and mesh refinement). The adaptive process
accounts for only 0.25 per cent of the total CPU time. This can be reduced
considerably by using simpler structured meshes with a mesh enrichment
method of refinement.

It is clear that this problem is dominated by the advective transport
mechanism; however, the solutions achieved do not rely on any special scheme
for advection dominated flow, such as SUPG, etc. This is a very significant
additional benefit of using adaptivity in the context of transient problems
(especially when a pre-adaptive cycle is performed on the initial conditions).
This was alluded to by an early paper by Gresho et al. (1979) and recently
demonstrated by Usmani (1999).

Fundamental frequencies were calculated for three Rayleigh numbers;
2 % 108 3 x 108and 4 x 10®. These frequencies were found to be slightly lower
than previously calculated by Chenoweth and Paolucci (1986). The primitive
variable time history results indicate that the transition from periodic to
quasi-periodic and quasi-periodic to mildy chaotic flow match those compiled
from past results. Further details such as the possible phase differences
between the oscillations at the two departing corners could not be investigated
here as an unstructured mesh generator was used in this work. Unless one is
prepared to refine to a much lower mesh size (which will be very expensive) it is
difficult to separate the effects caused by small differences in the local mesh
refinement and genuine flow features. A structured mesh version of this
program is under development, which will allow such investigations to be
undertaken reliably.
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